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Abstract: This paper is concerned with the full-order H∞ filtering problem for uncertain differential linear repet-
itive processes (LRPs). uncertain differential linear repetitive process (LRP) assumed to be stable along the pass,
our attention is focused on the design of a full-order filter, which guarantees the filtering error process to be stable
along the pass, and minimizes an upper bound for the H∞ norm of its transfer function. approach are proposed to
solve the full-order H∞ filtering problem.
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1 Introduction

As is well known, many practical systems can be
modeled as two-dimensional 2D systems [1, 2], such
as those in image data processing and transmission,
thermal processes, gas absorption and water stream
heating. During the last few decades, the investi-
gation of 2D systems in the control and signal pro-
cessing fields has attracted considerable attention and
many important results have been reported to the lit-
erature. Among these results, the H∞ filtering prob-
lem for two-dimensional 2D linear systems described
by Roesser and FornasiniMarchesini (FM) models in
[3, 5, 4, 30, 6, 7, 8, 13, 12, 16, 14, 28, 17, 18, 20],
for 2D linear parameter-varying systems, the related
work can be found in [28], stability and stabilization
of 2D systems in [23, 26, 22, 31], H∞ control for 2-
D nonlinear systems with delays and the nonfragile
H∞ and l2 − l1 problem for Roesser-type 2D systems
in [19]. However, because there is no systematic and
general approach to analyze linear repetitive processes
systems, many problems still remain.
On the other hand, Many physical systems complete
the same finite duration operation over and over again.
Repetitive processes have this characteristic where a
series of sweeps or passes are made through dynam-
ics defined over a finite duration known as the pass
length. Once each pass is complete, the process resets
to the original location and the next one begins. The
output on each pass is termed the pass profile and the
notation for scalar or vector valued variables is yk(t),
0 ≤ t ≤ α < ∞, k ≥ 0, where y is the scalar or vec-

tor valued variable, the integer k is the pass number
and α is the pass length. Also the previous pass pro-
file contributes to dynamics of the next one and the
result can be oscillations in the pass profile sequence
{y}k that increase in amplitude from pass-to-pass (k)
and cannot be studied by standard systems theory.
The problem becomes more complex when uncertain-
ties affect the model and a robust filter is needed. and
can make important effects on the properties of dy-
namic systems.
This work deals with the problem of robust H∞ fil-
ter design for uncertain differential linear repetitive
processes system with time-invariant parameters be-
longing to a polytope. The main contribution of this
paper is to provide new parameter-dependent LMIs
for H∞ robust filtering of uncertain differential lin-
ear repetitive processes system. by means of Finsler’s
lemma, the bounded real lemma for the H∞ norm
is lifted to a larger parameter space. In this new pa-
rameter space, extra degrees of freedom provided by
slack variables can be used to reduce the conservative-
ness when deriving LMI conditions for filter design.
By imposing a structure to the decision variables.
LMI relaxations based on homogeneously polynomi-
ally parameter-dependent matrices of arbitrary degree
are derived for the robust filter design. As illustrated
by several benchmark examples borrowed from the
literature, the proposed conditions provide less con-
servative than other existing method.

Notation : we use standard notation throughout
this paper. The notation P > 0(< 0) is used for posi-
tive (negative) definite matrices. ∗ stands for the sym-
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metric term of the diagonal elements of square sym-
metric matrix. I denotes the identity matrix with ap-
propriate dimension. the superscript ”T” represents
the transpose. sym(A) indicates AT + A, diag(...)
stands for a block-diagonal matrix.The Euclidean vec-
tor norm is denoted by ∥ . ∥. The l2 norm of a 2-D
signal fk(t) is given by

∥fk(t)∥2 =

√√√√ ∞∑
k=0

∫ ∞

0
fTk (t)fk(t)dt

where fk(t) is said to be in the space l2[0,∞), [0,∞)
or l2, for simplicity, if ∥ fk(t) ∥2<∞.

2 Preliminaries

Consider the uncertain differential linear repetitive
processes described by the following state-space
model over 0 ≤ t ≤ β, k ≥ 0:

ẋk+1(t) = A(α)xk+1(t) +B0(α)yk(t) +B(α)wk+1(t)
yk+1(t) = C(α)xk+1(t) +D0(α)yk(t) +D(α)wk+1(t)
zk+1(t) = E(α)xk+1(t) + F0(α)yk(t) + F (α)wk+1(t)

(1)
where on pass k, xk(t) ∈ Rn is the state vector and
yk(t) ∈ Rm is the pass profile vector, and wk(t) ∈ Rl

disturbance (or noise) vector which belongs to L2,
zk+1(t) ∈ Rr is the measured output, vk+1(t) ∈ Rp

is the signal to be estimated. respectively; A(α),
B0(α), B(α), C(α), D0(α), D(α), E(α), F0(α) and
F (α) are time-invariant but unknown real matrices
with appropriate dimensions.
the state initial vector on each pass and the initial pass
profile (on pass 0). The form of these considered here
is

xk+1(0) = dk+1, k ≥ 0
y0(t) = f(t)

(2)

where dk+1 ∈ Rn has known constant entries and
f(t) ∈ Rm are known functions of t. Throughout the
paper, the following assumptions are further made for
system (1)

Assumption 1:
A(α), B0(α), B(α), C(α), D0(α), D(α), E(α), F0(α)
and F (α) are assumed to satisfy
Ω(α) =(A(α),B0(α),B(α),C(α),D0(α),D(α),E(α),
F0(α),F (α)) ∈ R, where R is a given convex
bounded polyhedral domain defined as

R = {Ω(α) \Ω(α) =
N∑
i=1

αiΩi;α =
N∑
i=1

αi, αi ≥ 0}

with Ωi = (Ai,B0i,Bi,Ci,D0i,Di,Ei, F0i,Fi) denoting
vertices.
Assumption 2: System (1) is stable along the pass
for all Ω(α) ∈ R
In the paper, our interest is to estimate the signal
vk+1(t) by the using the following differential linear
repetitive processes reduced-order filter

φ̇k+1(t) = Afφk+1(t) +B0fϕk(t) +Bfzk+1(t)
ϕk+1(t) = Cfφk+1(t) +D0fϕk(t) +Dfzk+1(t)
v̂k+1(t) = Gfφk+1(t) +H0fϕk(t) +Hfzk+1(t)
φk+1(0) = 0, k ≥ 0, ϕ0(t) = 0, 0 ≤ t ≤ β

(3)
where on pass k, φk(t) ∈ Rn is the state vector of
the filter, ϕk(t) ∈ Rm is the pass profile vector and
v̂k+1(t) ∈ Rp is the estimator of vk+1(t) .

Defining the augmented system:

ξ̇k+1(t) = Ã(α)ξk+1(t) + B̃0(α)ζk(t)

+B̃(α)wk+1(t)

ζk+1(t) = C̃(α)ξk+1(t) + D̃0(α)ζk(t)

+D̃(α)wk+1(t)

ek+1(t) = G̃(α)ξk+1(t) + H̃0(α)ζk(t)

+H̃(α)wk+1(t)
ξk+1(0) = 0, k ≥ 0, ζ0(t) = 0, 0 ≤ t ≤ β

(4)

where
ξk+1(t) = [xTk+1(t) φT

k+1(t)]
T

ζk(t) = [yTk (t) ϕTk (t)]
T , ek+1(t) = vk+1(t) −

v̂k+1(t)
and

Ã(α) =

[
A(α) 0

BfE(α) Af

]
B̃0(α) =

[
B0(α) 0
BfF0(α) B0f

]
B̃(α) =

[
B(α)
BfF (α)

]
C̃(α) =

[
C(α) 0

DfE(α) Cf

]
D̃0(α) =

[
D0(α) 0
DfF0(α) D0f

]
D̃(α) =

[
D(α)
DfF (α)

]
G̃(α) =

[
G−HfE(α) −Gf

]
H̃0(α) =

[
H0 −HfF0(α) −H0f

]
H̃(α) =

[
−HfF

]

(5)

The parameter uncertainties considered in this paper
are assumed to be of polytopic type, entering into all
the vertices of the system model. The polytopic un-
certainty has be widely used in the problems of robust
control and filtering for uncertain systems (see, for
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instance, [25] and the references therein), and many
practical systems possess parameter uncertainties
which can be either exactly modeled or overbounded
by the polytope R.
Then, the differential linear repetitive processes H∞
filtering problem to be addressed in this paper can
be expressed as follows: given the differential linear
repetitive processes system (1), design a suitable
a full-order filter (3) such that the following tow
requirements are satisfied.

1. The resulting error process (4) with w(i, j) ≡ 0
is stable along the pass for all Ω(α) ∈ R.

2. Under zero boundary condition, and for all
non-zero wk+1(t) ∈ L2, we require that

∥ek+1(t)∥2 < γ∥wk+1(t)∥2 (6)

Lemma 2.1 Let ξ ∈ Rn, Q ∈ Rn×n and B ∈ Rm×n

with rank(B) < n and B⊥ such that BB⊥ = 0.
Then, the following conditions are equivalent:
(i) ξTQξ < 0,∀ξ ̸= 0 : Bξ = 0

(ii) B⊥T
QB⊥ < 0

(iii) ∃µ ∈ ℜ : Q− µBTB < 0
(iv) ∃χ ∈ ℜn×m : Q+ χB +BTχT < 0

3 Robust H∞ filtering analysis

Using theorem 1 in ([11]) with P1(α) > 0 and
P2(α) > 0 are parameter-dependent symmetric ma-
trices. we have the following result.

Lemma 3.1 The filtering error process (4) is stable
along the pass with prescribedH∞ performance level
γ > 0 if there exist matrices P1 > 0 and P2 > 0 such
that the following LMIs hold for all Ω(α) ∈ R:

Γ11 Γ12 P1(α)B̃(α) G̃T (α) C̃T (α)P2(α)

∗ −P2(α) 0 H̃0
T
(α) D̃0

T
(α)P2(α)

∗ ∗ −γ2I H̃T (α) D̃T (α)P2(α)
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −P2(α)

 < 0

(7)

where
Γ11 = P1(α)Ã(α) + ÃT (α)P1(α)

Γ12 = P1(α)B̃0(α)

Theorem 1 The filtering error process (4) is stable
along the pass with prescribedH∞ performance level
γ > 0 if there exist a parameter-dependent sym-
metric positive definite matrices P1(α), P2(α) and
parameter-dependent matrices L(α), K(α), M(α)

and N(α) such that the following LMIs (8) hold for
all Ω(α) ∈ R:

ψ11 ψ12 ψ13 ψ14

∗ ψ22 ψ23 ψ24

∗ ∗ −I −N(α)
∗ ∗ ∗ ψ44

 < 0 (8)

where
ψ11 = −P̄2(α) + L(α)Ā(α) + ĀT (α)LT (α)
ψ12 = L(α)B̄(α) + ĀT (α)MT (α)
ψ13 = ḠT (α) + ĀT (α)NT (α)
ψ14 = −L(α) + ĀT (α)KT (α) + P̄1(α)
ψ22 =M(α)B̄(α) + B̄T (α)MT (α)− γ2I

ψ23 = H̃(α) + B̄T (α)NT (α)
ψ24 = −M(α) + B̄T (α)KT (α)
ψ44 = −K(α)−KT (α) + P̄2(α)
and

Ā(α) =

[
Ã(α) B̃0(α)

C̃(α) D̃0(α)

]
B̄(α) =

[
B̃(α)

D̃(α)

]
Ḡ(α) = [G̃(α) H̃0(α)]
P̄2(α) = diag(0, P2(α)
P̄1(α) = diag(P1(α), 0)
Proof:The LMIs (8) is obtained by considering

χ =


L(α)
M(α)
N(α)
K(α)


B =

[
Ā(α) B̄(α) 0 −I

]

Q =


−P̄2(α) 0 ḠT (α) P̄1(α)

∗ −γ2I H̃(α) 0
∗ ∗ −I 0
∗ ∗ ∗ P̄2(α)

 (9)

in condition (iv) of lemma II.1 with

B⊥ =


I 0 0
0 I 0
0 0 I

Ā(α) B̄(α) 0


and then by calculation and schur complement, using
condition (ii) of lemma II.1, we can obtain the
equivalence between B⊥TQB⊥ < 0 and LMIs (7),
(7) is equivalent to (8). Thus Theorem 1 is equivalent
to lemma III.1.�

Remark 1: When the matrices (Ã(α), B̃0(α),
B̃(α), C̃(α), D̃0(α), D̃(α), G̃(α), H̃0(α), H̃(α)) are
known. However, if the matrices are from an uncer-
tain polytope, (8) would render a less-conservative
evaluation of the upper-bound of the H∞ norm of the
system (4) due to the freedom given by slack variables
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L(α), M(α), N(α) and K(α) and the fact that P1(α)
and P2(α) are allowed to vertex-dependent in (8).
This additional matrix variable will enable use to
derive a less conservative robust full-order filtering
design

4 Robust H∞ filter design

The above result is useful for H∞ analysis when
the full-order filter is given. In order to facilitate
the robust full-order H∞ filter design, we need to
consider a special case of the above theorem. To this
end, we specify the matrices L(α), M(α), N(α) and
K(α) as follows:

L(α) = diag

{[
T11(α) T12
T21(α) T12

]
,

[
F11(α) F12

F21(α) F12

]}
(10)

K(α) = diag

{[
G11(α) λ1T12
G21(α) λ2T12

]
,

[
L11(α) λ3F12

L21(α) λ4F12

]}
M(α) = [T1(α) 0 T2(α) 0]
and
N(α) = [T3(α) 0 T4(α) 0]

where

and T12, F12, λ1, λ2, λ3, λ4 are scalar variables
to be determined. For convenience, matrices P1(α)
and P2(α) is also partitioned as following

P1(α) =

[
P11(α) P12(α)
P T
12(α) P22(α)

]

P2(α) =

[
Q11(α) Q12(α)
QT

12(α) Q22(α)

]
(11)

and the following change of variables is adopted
Āf = T12Af , B̄f = T12Bf , B̄0f = T12B0f , C̄f =
F12Cf , D̄f = F12Df , and D̄0f = F12D0f . With
this particular choice for the decision variables, the
sufficient condition in lemma III.1 for the existence of
a robust H∞ full-order filter, as presented below.
A sufficient parameter-dependent condition

Theorem 2 The full-order filtering error process (3)
is stable along the pass with prescribed H∞ per-
formance level γ > 0 if there exist a parameter-
dependent symmetric positive definite matrices P1(α),
P2(α) as in (11) and parameter-dependent matrices
L(α), M(α), N(α), K(α) as in (10) and matrices
Āf , B̄0f , D̄f , D̄0f , B̄f , C̄f , Ḡf , H̄0f , H̄f and scalars

λ1, λ2, λ3, λ4 such that the following LMIs hold for
all α ∈ ΛN :

Λ11 Λ12 Λ13 Λ14

∗ Λ22 Λ23 Λ24

∗ ∗ Λ33 Λ34

∗ ∗ ∗ −I

 < 0 (12)

where

Λ11 =


η11 η12 η13 η14
∗ sym(Āf ) η23 η24
∗ ∗ η33 η34
∗ ∗ ∗ η44


with

η11 = sym(T11(α)A(α)) + sym(B̄fE(α))

η12 = Āf +AT (α)T T
21(α) + ET (α)B̄T

f

η13 = T11(α)B0(α) + CT (α)F T
11(α) + B̄fF0(α) +

ET (α)D̄T
f

η14 = B̄0f + CT (α)F T
21(α) + ET (α)D̄T

f

η23 = T21(α)B0(α) + B̄fF0(α) + C̄T
f

η24 = B̄0f + C̄T
f

η33 = sym(F11(α)D0(α)) + sym(D̄fF0(α)) −
Q11(α)
η34 = D̄0f +DT

0 (α)F
T
21(α) + F T

0 (α)D̄T
f −Q12(α)

η34 = sym(D̄0f )−Q22(α)

,Λ12 =


ϕ11
ϕ21
ϕ31
ϕ31


with
ϕ11 = T11(α)B(α) + B̄fF (α) + AT (α)T T

1 (α) +

CT (α)T T
2 (α)

ϕ21 = T21(α)B(α) + B̄fF (α)

ϕ31 = F11(α)D(α) + D̄fF (α) + BT
0 (α)T

T
1 (α) +

DT
0 (α)T

T
2 (α)

ϕ31 = F21(α)D(α) + D̄fF (α)

,Λ13 =


φ11 φ12 φ13 φ14

φ21 φ21 φ23 λ4C̄
T
f

φ31 φ32 φ33 φ34

φ41 λ2B̄
T
0f φ43 φ44


with
φ11 = AT (α)GT

11(α) + P11(α) + λ1E
T (α)B̄T

f −
T11(α)
φ12 = AT (α)GT

21(α)+P12(α)+λ2E
T (α)B̄T

f −T12
φ13 = CT (α)LT

11(α) + λ3E
T (α)D̄T

f

φ14 = CT (α)LT
21(α) + λ4E

T (α)D̄T
f

φ21 = λ1Ā
T
f + P T

12(α)− T21(α)

φ22 = λ2Ā
T
f + P22(α)− T12

φ23 = λ3C̄
T
f
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φ31 = BT
0 (α)G

T
11(α) + λ1F

T
0 (α)B̄T

f

φ32 = BT
0 (α)G

T
21(α) + λ2F

T
0 (α)B̄T

f

φ33 = DT
0 (α)L

T
11(α) + λ3F

T
0 (α)D̄T

f − F11(α)

φ34 = DT
0 (α)L

T
21(α) + λ4F

T
0 (α)D̄T

f − F12

φ41 = λ1B̄
T
0f

φ43 = λ3D̄
T
0f − F21(α)

φ44 = λ4D̄
T
0f − F12

,Λ14 =


Λ1
14

−GT
f

Λ3
14

−HT
0f


with
Λ1
14 = GT (α) − ET (α)HT

f + AT (α)T T
3 (α) +

CT (α)T T
4 (α)

Λ3
14 = HT

0 (α) − F T
0 (α)HT

f + BT
0 (α)T

T
3 (α) +

DT
0 (α)T

T
4 (α)

,Λ22 =
[
sym(T1(α)B(α)) + sym(T2(α)D(α))− γ2Il

]
,Λ23 =

[
χ11 χ12 χ13 χ14

]
with
χ11 = BT (α)GT

11(α) + λ1F
T (α)B̄T

f − T1(α)

χ12 = BT (α)GT
21(α) + λ2F

T (α)B̄T
f

χ13 = DT (α)LT
11(α) + λ3F

T (α)D̄T
f − T2(α)

χ14 = DT (α)LT
21(α) + λ4F

T (α)D̄T
f

,Λ24 = −F T (α)HT
f +BT (α)T T

3 (α)+DT (α)T T
4 (α)

,Λ33 =


−sym(GT

11(α)) ψ12 0 0
∗ −λ2sym(T12) 0 0
∗ ∗ ψ33 ψ34

∗ ∗ ∗ ψ44


with
ψ12 = −λ1T12 −GT

21(α)
ψ33 − sym(L11(α)) +Q11(α)
ψ34 = −λ3F12 − LT

21(α) +Q12(α)
ψ44 − λ4sym(F12) +Q22(α)

,Λ34 =


−T T

3 (α)
0

−T T
4 (α)
0


and

Then there exists a full-order filter of the form
of (3) such that the full-order filtering error dynamics
are stable along the pass and the prescribed H∞
performance level γ is achieved. This H∞ full-order
filter can be computed from Af B0f Bf

Cf D0f Df

Gf H0f Hf

 =

 T−1
12 0 0

0 F−1
12 0

0 0 I

 Āf B̄0f B̄f

C̄f D̄0f D̄f

Ḡf H̄0f H̄f



Remark 2: The searching parameters λ1, λ2, λ3
and λ4 in Theorem 1 can be searched using some
optimization program (eg MATLAB fminsearch), to
attain better optimization result. When they are set
to be fixed constants, (12) is linear in the variables.
Thus the following convex optimization problem:
Minimize γ subject to (12)
can be solved easily by using Yalmip ([33]) and
SeDumi ([34]).

4.1 LMI conditions for robust full-order fil-
tering

Theorem 2 is parameter-dependent sufficient LMI
conditions for the existence of a robust H∞ reduced-
order filter. obtained directly from lemma 3 by impos-
ing a particular structure to L(α), M(α), N(α), and
K(α) (11). Moreover, they depend on scalar variables
λ1, λ2, λ3 and λ4 that need to be searched. the main
difference with respect to lemma 3 is that Af , B0f ,
Bf , Cf , D0f , Df , Gf , H0f and Hf can be readily
obtained from a feasible solution by simple change of
variables. Another important point is concerned with
the scalar parameters λ1, λ2, λ3 and λ4. the role of
the scalar variables in the LMI conditions is to pro-
vide extra degrees of freedom and, possibly, to reduce
the conservativeness of the LMI tests. In most cases,
simple choices such as 0 or 1, for λ1, λ2, λ3 and λ4.
provide less conservative results. This is mainly due
to the presence of extra variables in the proposed con-
ditions.
Although only the H∞ norms have been used in this
paper, other performance criteria could be investi-
gated as well for full-order filter design by means of
polynomial lyapunov functions.
To solve the parameter-dependent LMI conditions of
Theorems 2 the technique proposed in ([24]) to han-
dle parameter-dependent LMIs with parameters in the
unit simplex can be applied. To this end, the poly-
nomial matrices (decision variables in the parameter-
dependent LMIs, i.e. P1(α), P2(α), T11(α), T21(α),
F11(α), F21(α), G11(α), G21(α), L11(α), L21(α),
T1(α), T2(α), T3(α) and T4(α)) are treated as homo-
geneous polynomials of arbitrary degree g and suffi-
cient LMI conditions, more and more precise with the
increase of g, are expressed only in terms of the ver-
tices of the polytope

5 Illustrative examples

Example 1:
Consider Differential Linear Repetitive Processes
system borrowed from [11]:
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A=

−1.45 + 0.01δ 0.64 −0.40 + 0.01δ
−0.60 −1.41 0.00

0.30 + 0.01δ −0.20 −0.70 + 0.01δ


B0=

 1.3 + 0.01δ 0.10 + 0.01δ
−0.20 −0.90

0.20 + 0.01δ −0.40 + 0.01δ


B=

0.60 + 0.01δ
−1.20

0.20 + 0.01δ


D=

[
1.20 + 0.01δ
1.00 + 0.01δ

]
C=

[
1.3 + 0.01δ −0.60 −0.10 + 0.01δ
0.30 + 0.01δ −0.20 0.60 + 0.01δ

]
D0=

[
−0.60 + 0.01δ 0.10 + 0.01δ

0.01δ −0.60 + 0.01δ

]
E=

[
−0.80 + 0.01δ 0.40 0.20 + 0.01δ

]
F0=

[
−0.30 + 0.01δ 0.20 + 0.01δ

]
G=

[
−1.00 0.60 0.30

]
H0=

[
−0.40 0.30

]
F = −0.10 + 0.01δ
Consider the case when δ is non-zero and satisfies
|δ| ≤ 1. Then in the polytopic uncertainty model
for this case the uncertainties in the parameters are
represented by a tow-vertex polytope and we take the
vertices to be at δ = 1 and -1, respectively.
Table 1 shows the minimum γ obtained with Theorem
1

Table 1
the minimum γ obtained with several arbitrary degree
g

T1(g=0) T1(g=1) T1(g=2) [11]
γmin 0.2750 0.2522 0.2522 0.2750
λ1 0.1405 0.1935 0.1940
λ2 0.3689 0.2259 0.2269
λ3 80.9105 34.2888 42.6769
λ4 134.0608 22.1290 31.1118

for this example Theorem 1 with λ1 = 0.1935,
λ2 = 0.2259, λ3 = 34.2888, λ4 = 22.1290 and
g=1, provides a γmin = 0.2522, while ([11]) yields
0.2750. in this case, the γmin obtained by Theorem 1
with g=2 is smaller than the one provided by ([11]).
Now we Consider the case when δ is non-zero and
satisfies |δ| ≤ 7. Then in the polytopic uncertainty
model for this case the uncertainties in the parameters
are represented by a tow-vertex polytope and we take
the vertices to be at δ = 7 and -7, respectively.
Table 2 shows the minimum γ obtained with Theorem
1

Table 2
the minimum γ obtained with several arbitrary degree
g

T1(g=0) T1(g=1) T1(g=2) [11]
γmin 12.5651 1.8689 1.6719 12.5686
λ1 0.1910 0.0632 0.5597
λ2 0.1881 1.1746 1.0123
λ3 31.8588 10.1105 17.8291
λ4 21.3712 23.0610 292.5050

It is clearly shown that less conservative filter
designs are achieved as g grows by applying
the structured polynomially parameter-dependent
method. illustrating that the proposed method can
outperform the other when the system is subject to
more uncertainty
Finally, we Consider the case when δ is non-zero and
satisfies |δ| ≤ 7.5.
Table 3 shows the minimum γ obtained with Theorem
1

Table 3
the minimum γ obtained with several arbitrary degree
g

T1(g=0) T1(g=1) T1(g=2) [11]
γmin infeasible 2.5318 1.9103 infeasible
λ1 0.2335 0.4765
λ2 0.2142 0.9022
λ3 28.1220 16.5565
λ4 63.6108 29.3395

Example 2:
As an example, the metal rolling process is con-
sidered . This process is an extremely common
industrial process where, in essence, deformation of
the workpiece takes place between tow rolls with
parallel axes revolving in opposite directions.
Thus the following linear differential equation repre-
sent Metal Rolling dynamics: ([27]).

S̈k(t)+
α

M
Sk(t) =

α

α1
S̈k−1(t)+

α

M
Sk−1(t)−

α

Mα2
FM (t)

(13)

Where:
Sk(t):current passes through the rolls.
Sk−1(t):previous passes through the rolls.
M: is the lumped mass of the roll-gap adjusting
mechanism
α1: the stiffness of the adjustment mechanism spring
α2: the hardness of the metal strip
α = α1α2

α1+α2
:the composite stiffness of the metal strip

and the roll mechanism
FM (t):the force developed by the motor.
The linear differential equation (13) can be modelled
as a system (1) by imposing :

xk+1(t)=
[
sk(t)
ṡk(t)

]
and yk(t)=

[
sk−1(t)
s̈k−1(t)

]
Thus The linear differential equation (13) can be
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writhed:
ẋk+1(t)=

[
0 1

− α
M 0

]
xk+1(t)+

[
0 0
α
M

α
α1

]
yk(t)+

[
0

− α
Mα2

]
FM (t)

yk+1(t)=
[

1 0
− α

M 0

]
xk+1(t)+

[
0 0
α
M

α
α1

]
yk(t)+

[
0

− α
Mα2

]
FM (t)

In these design studies, the data used are α1 = 600,
α1 = 2000 and M = 100 This yields α = 461.54
and the following matrices in (1):

A=
[

0 1
−7.6035 + 0.1δ −3.7722

]
B0=

[
0 0

4.6153846 + 0.1δ 0.7692307 + 0.1δ

]
B=

[
0

−0.00230769 + 0.1δ

]
D=

[
0

−0.00230769 + 0.1δ

]
C=

[
1 0

−7.6035 + 0.1δ −3.7722

]
D0=

[
0 0

4.6153846 + 0.1δ 0.7692307 + 0.1δ

]
E=

[
−0.80 + 0.1δ 0.20 + 0.1δ

]
F0=

[
−0.30 + 0.1δ 0.20 + 0.1δ

]
G=

[
−1.00 0.30

]
H0=

[
−0.40 0.3

]
F = −0.10 + 0.01δ
Consider the case when δ is non-zero and satisfies
|δ| ≤ 2.3. Then in the polytopic uncertainty model
for this case the uncertainties in the parameters are
represented by a tow-vertex polytope and we take the
vertices to be at δ = 2.3 and -2.3, respectively.
Table 1 shows the minimum γ obtained with Theorem
1

Table 1
the minimum γ obtained with several arbitrary degree
g

T1(g=0) T1(g=1) T1(g=2) T1(g=3) [11]
γmin 0.3423 0.0902 0.0814 0.0798 0.3423
λ1 0.0001 0.0106 0.0106 0.0037
λ2 0.0001 0.0106 0.0106 0.0037
λ3 13.0477 33.7882 33.7882 17.9131
λ4 12.9183 36.9735 36.9735 17.7059

6 Conclusions

New parameter-dependent LMI conditions for the
design of full order robust and H∞ filters have been
proposed, for both uncertain polytopic differential lin-
ear repetitive processes with time-invariant parame-
ters. LMI relaxations based on homogeneous polyno-
mials of arbitrary degrees provided less conservative
results when compared the other existing technique.
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